quasidoubly periodic function - définition. Qu'est-ce que quasidoubly periodic function
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est quasidoubly periodic function - définition

MATHEMATICAL FUNCTION
Quasi-periodic function
  • 2π}}+sin(''x'') satisfies the equation ''f''(''x''+2π)=''f''(''x'')+1, and is hence arithmetic quasiperiodic.

aperiodic         
FUNCTION THAT REPEATS ITS VALUES IN REGULAR INTERVALS OR PERIODS
Period length; Aperiodic; Periodic solution; Periodic functions; Aperiodic function; Periodic signal; Non-periodic; Period of a function; Periodic Waveform period; Period (mathematics); Periodical function; Antiperiodic function; Periodicity condition; Periodic Function; Period (math); Antiperiodic; Periodic solutions
¦ adjective chiefly Physics
1. not periodic; irregular.
2. damped to prevent oscillation or vibration.
Derivatives
aperiodicity noun
Periodic function         
FUNCTION THAT REPEATS ITS VALUES IN REGULAR INTERVALS OR PERIODS
Period length; Aperiodic; Periodic solution; Periodic functions; Aperiodic function; Periodic signal; Non-periodic; Period of a function; Periodic Waveform period; Period (mathematics); Periodical function; Antiperiodic function; Periodicity condition; Periodic Function; Period (math); Antiperiodic; Periodic solutions
A periodic function is a function that repeats its values at regular intervals. For example, the trigonometric functions, which repeat at intervals of 2\pi radians, are periodic functions.
periodic function         
FUNCTION THAT REPEATS ITS VALUES IN REGULAR INTERVALS OR PERIODS
Period length; Aperiodic; Periodic solution; Periodic functions; Aperiodic function; Periodic signal; Non-periodic; Period of a function; Periodic Waveform period; Period (mathematics); Periodical function; Antiperiodic function; Periodicity condition; Periodic Function; Period (math); Antiperiodic; Periodic solutions
¦ noun Mathematics a function returning to the same value at regular intervals.

Wikipédia

Quasiperiodic function

In mathematics, a quasiperiodic function is a function that has a certain similarity to a periodic function. A function f {\displaystyle f} is quasiperiodic with quasiperiod ω {\displaystyle \omega } if f ( z + ω ) = g ( z , f ( z ) ) {\displaystyle f(z+\omega )=g(z,f(z))} , where g {\displaystyle g} is a "simpler" function than f {\displaystyle f} . What it means to be "simpler" is vague.

A simple case (sometimes called arithmetic quasiperiodic) is if the function obeys the equation:

f ( z + ω ) = f ( z ) + C {\displaystyle f(z+\omega )=f(z)+C}

Another case (sometimes called geometric quasiperiodic) is if the function obeys the equation:

f ( z + ω ) = C f ( z ) {\displaystyle f(z+\omega )=Cf(z)}

An example of this is the Jacobi theta function, where

ϑ ( z + τ ; τ ) = e 2 π i z π i τ ϑ ( z ; τ ) , {\displaystyle \vartheta (z+\tau ;\tau )=e^{-2\pi iz-\pi i\tau }\vartheta (z;\tau ),}

shows that for fixed τ {\displaystyle \tau } it has quasiperiod τ {\displaystyle \tau } ; it also is periodic with period one. Another example is provided by the Weierstrass sigma function, which is quasiperiodic in two independent quasiperiods, the periods of the corresponding Weierstrass function.

Functions with an additive functional equation

f ( z + ω ) = f ( z ) + a z + b   {\displaystyle f(z+\omega )=f(z)+az+b\ }

are also called quasiperiodic. An example of this is the Weierstrass zeta function, where

ζ ( z + ω , Λ ) = ζ ( z , Λ ) + η ( ω , Λ )   {\displaystyle \zeta (z+\omega ,\Lambda )=\zeta (z,\Lambda )+\eta (\omega ,\Lambda )\ }

for a z-independent η when ω is a period of the corresponding Weierstrass ℘ function.

In the special case where f ( z + ω ) = f ( z )   {\displaystyle f(z+\omega )=f(z)\ } we say f is periodic with period ω in the period lattice Λ {\displaystyle \Lambda } .